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Newell Washburn (CMU): The Washburn group 

will characterize, screen, model, and design 

chemical admixtures and their interactions with 

binders and concrete, and develop machine 

learning models.

Barnabas Poczos (CMU): Algorithm design, model 

assessment, and software development.

Kim Kurtis (Georgia Tech): Characterize and test 

binder materials, establish relevant engineering 

models, perform LCA, develop machine learning 

models, and mix and test cement and concrete.

Ogulcan Canbek (Georgia Tech): Ogulcan is a 

PhD student at Georgia Institute of Technology 

whose research focuses on the development of 

sustainable cement-based materials and 

cement-admixture interactions through the 

utilization of statistical modelling with microscale 

and macroscale characterization techniques 

Chris Childs (CMU): Chris completed a PhDin

Chemistry at CMU on the study of complex 

material systems, with primary focus on 

cementitious systems.

Francesca Lolli (Georgia Tech): Francesca is a 

post-doctoral associate at Georgia Tech. Her 

focus is on Life Cycle Assessment and Cost 

Estimate of C$A and LC3 cement.

Calvin Gang (CMU): Calvin is a PhD student in 

Chemistry whose research focuses on designing 

complex materials with machine learning.
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Next-Generation Cementitious Materials

‣ To minimize embodied CO2 and maximize 
performance, cementitious binders will be 
designed with a diversity of SCMs in complex 
formulations

– Limestone, fly ash (spec and off-spec), 
slag, calcined clays

‣ Tools for mix design are needed to provide 
accurate predictions for complex formulations

‣ In this ARPA-E project, we leverage machine 
learning to meet sustainability challenges in 
cementitious infrastructure materials

– Prototype design tool demonstrated for 
LC3 with the targets:

• Half the embodied CO2

• Twice the durability

• Similar handling characteristics and 
cost as OPC
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❑ Cost:

• OPC: $110/ton

• LC3: $60-$190/ton (depending on clay source, LS particle size).



Prototype Design Space

‣ LC3 has high loading of OPC with 
calcined clay and limestone

– Target >50% replacement

‣ Hypothesis: For some arbitrary 
combination of materials there is a 
formulation which will meet design criteria 

‣ For given feedstock sources, develop a 
tool that specifies:

– Particle size

– Limestone and calcined clay loading

– Limestone:calcined clay ratio

– Water:binder ratio

– Superplasticizer

Portland Cement: 
-Argos

Limestone:
-3 μm
-15 μm
-25 μm
-40 μm

Metakaolin:
-Imerys 1000-10 μm
-Imerys 1200-2 μm
-Also have MetaMax, 
Burgess, and US 
Mines

LC3 Cements

Water: Cementitious

Superplas cizers

Multiple blends 
created with various 

proportions 



Our Approach: Hierarchical Machine Learning

‣ HML integrates physical modeling in a framework of statistical learning, allowing 

accurate predictions from small datasets and facile transfer learning to different 

feedstocks

‣ Models for workability and strength were separately developed
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workability set time strength durability

OPC calcined clay waterlimestone admixtures

particle size packing pore solution hydration

material variables

latent variables

material properties

physical modeling

statistical learning



Methodology for Predicting Binder Strength: 

Black Box vs. HML Models

‣ In a “black box” approach, the relationship between strength and composition is modeled by 
measuring the strength of many compositions and fitting the resulting curves with machine 
learning tools

‣ In an HML approach, strength is modeled by estimating latent variables, such as particle packing 
and pozzolanic activity

– Provides functional relationships that connect the predicted values of strength
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Composition Variables (x)

Latent Variables (h)

Objective: S

Black Box Model:

S(x)

HML Model: 

S(h)



HML More Accurate than Black Box Model
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Train RMSE: 11.29 MPa

Test RMSE: 12.81 MPa

Train R2: 0.60 

Test R2 : 0.49

Train RMSE: 2.59 MPa

Test RMSE: 4.65 MPa

Train R2: 0.98

Test R2 : 0.92

Black Box Model HML Model



Results for LC3 multi-objective optimization: 

Simultaneous Prediction of Workability and Strength
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‣ The Pareto front was determined to maximize mini-

slump spread and strength subject to constraints:

‣ Cost < $140/ton

‣ CO2 < 450kg/ton

Cement MK1000 MK1200 LS3 LS15 LS25 LS40 Metamax Gypsum w/binder

0.55 0.00 0.06 0.09 0.00 0.00 0.19 0.09 0.02 0.40

SP% Predicted PAT (cm) Measured PAT (cm) ARPA-E Goal PAT (cm) Set Time (min) ARPA-E Goal Set Time (min)

0.25% 5.8cm 4.6cm 4.0cm 130min 60min

Cure Time Predicted Strength (MPa) Measured Strength (MPa) ARPA-E Goal Strength (MPa)
7 days 66 MPa 46 MPa 21 MPa
28 days 79 MPa 46 MPa 28 MPa



AI-enabled design of LC3

‣ LC3 is the leading candidate to be a 

more sustainable replacement for OPC

‣ Hypothesis: Mix design for LC3 is a 

complex formulation problem

– For some arbitrary combination of 

portland cement, limestone, and 

calcined clay, there is a formulation 

that will meet performance criteria 

– A machine-learning design tool is 

developed for optimizing LC3 

formulations from arbitrary 

feedstocks 



Project Objective: Design tools based on machine learning

‣ In general, a machine learning 

algorithm takes a compositional space 

and creates a relation to an output.

‣ Benchmark study: 28-day 

compressive strength models for 

concrete of 706 samples from 

laboratory-produced samples (Yeh et 

al.) and 9994 samples from a range of 

various concrete production sites 

(VIP). R2 values ranged from 0.54 to 

0.86.
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Young, B. A., Hall, A., Pilon, L., Gupta, P. & Sant, G. Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New 

insights from statistical analysis and machine learning methods. Cem. Concr. Res. 115, 379–388 (2019).



Model for LC3 workability 
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‣ A random forest was utilized for the prediction of slump based on 66 various LC3 

formulations and PCE architectures. Utilizing latent variables performs better than 

composition variables for training data and generalizing to a test set.

R2 MSE RMSE (cm) Expected Error 

%

Training Set

Bottom
0.82 1.3 1.14 cm 8.7%

Training Set

Middle
0.93 0.52 0.72 cm 7.7%

Test Set

Bottom
0.71 1.82 1.35 cm 14.5%

Test Set

Middle
0.83 1.07 1.03 cm 11.0%



Modeling LC3 strength

R2 RMSE (MPa)

Validation Set

Bottom
-0.02 11.74 MPa

Validation Set

Middle
0.95 2.54 MPa
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‣ A gaussian process regression was utilized for the prediction of strength based on  

96 LC3 formulations, with a total of 435 datapoints for various days of testing. 

Utilizing a middle layer performs better in terms of generalizing to a validation set 

which was tested with different types of materials and higher w/cm ratios than any 

point in the training set.



Modeling LC3 durability

 Surface resistivity (AASHTO T 358-15) is a rapid indication of concrete resistance to the penetration 

of chloride ions

 High correlation with chloride exposure tests such as ASTM C1202 and ASTM C1556

 Development of surface resistivity over time can show microstructural development during cement 

hydration

 An indirect method to assess pozzolanicity of supplementary cementitious materials

High 

permeability

Low resistivity

Low 

permeability

High resistivity

A schematic from Nadelman and 

Kurtis (2014) showing electron 

flow in concrete

Wenner probe



▪ Surface resistivity of 11 concrete mixtures including 7 different mixture proportions, 3 different 

limestone particle sizes (L3, L15, L25) and 3 different gypsum addition levels (0%, 2%, and 5% by 

mass of solid) were measured up to 56 days of hydration

▪ Water-to-cementitious (w/c) ratio was kept constant at 0.4, and up to 1% (wt.% of solid) 

superplasticizer was added
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Particle size distribution of materials used

Training set



Increasing limestone fineness results in higher resistivity
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 Filler effect imparted by L3 
enhances the surface 
resistivity

 By 8 days of hydration, the 
target surface resistivity of 
37 kΩ-cm is achieved for all 
mixes



Complex relationship between metakaolin content and surface 

resistivity 
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 Direct correlation between 
metakaolin content and 
surface resistivity only up to 
8 days

 Early pore refinement 
depending on metakaolin

 Highest metakaolin including 
mix -55:30:15 (L15-G0)- has 
slightly lower resistivity after 
8 days 



Gypsum addition enhances the surface resistivity of LC3
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 Ettringite formation is 
enhanced with extra 
gypsum, resulting in higher 
surface resistivities

 By 7 days of hydration, all 
mixes achieved the target 
surface resistivity of 37 kΩ-
cm 



17

PREDICTING SURFACE RESISTIVITY OF LC3 CONCRETE
▸All 11 mixes LC3 were included in modeling

▸The dataset was split to 75% training and 25% testing sets with cross validation

▸Stepwise, LASSO and Support Vector Machine (SVM) algorithms were implemented with 
predictor (X) variables selected as follows:

– OPC content (wt.%)

– Metakaolin/Limestone mass ratio

– Limestone median particle diameter

– SO3 content in cementitious mix (%)

– Al2O3/SO3 in cementitious mix

– Log(time)

▸For SVM, Radial kernel was used, and Cost and gamma hyperparameters were tuned through 
grid search

PREDICTING SURFACE RESISTIVITY OF LC3 CONCRETE
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SUPPORT VECTOR MACHINE OUTPERFORMS OTHER ALGORITHMS

Model RMSE (kohm-cm)

Stepwise 50.73

LASSO 45.32

SVM (Radial Kernel) 18.37

SVM model fitting graphic:  Actual vs. Predicted

SUPPORT VECTOR MACHINE ACCURATELY PREDICTS SURFACE RESISTIVITY



Toward Commercialization

‣ The algorithms developed in this ARPA-E 

project will be further developed by 

Ansatz AI

‣ Ansatz AI is a chemicals/materials 

informatics company founded by Profs. 

Washburn and Poczos

– Accelerated design and optimization 

of complex systems

‣ Team member Chris Childs joined Ansatz 

AI and will lead this effort in partnership 

with the cement and concrete industry
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Conclusions and Acknowledgments

‣ Machine learning models of LC3 based on latent 

variables are accurate and effective for mix design and 

multi-objective optimization

– Work continues on identifying latent variables from 

experiments and theory for more accurate machine 

learning models

‣ Rapid virtual screening of chemical admixtures can be 

performed using cheminformatics and machine learning

– Rapid transfer learning to new binder systems

‣ Acknowledgments:

‣ Dr. Joseph King (ARPA-E)

‣ Prof. Karen Scrivener (EPFL)

‣ Dr. Franco Zunino (EPFL)
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